Compact four–dimensional euclidean space embedded in the universe
نویسندگان
چکیده
منابع مشابه
compact hypersurfaces in euclidean space and some inequalities
let (m,g ) be a compact immersed hypersurface of (rn+1,) , λ1 the first nonzeroeigenvalue, α the mean curvature, ρ the support function, a the shape operator, vol (m ) the volume of m,and s the scalar curvature of m. in this paper, we established some eigenvalue inequalities and proved theabove.1) 1 2 2 2 2m ma dv dvn∫ ρ ≥ ∫ α ρ ,2)( )2 2 1 2m 1 mdv s dvn nα ρ ≥ ρ∫ − ∫ ,3) if the scalar curvatu...
متن کاملOn the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملTangent Bundle of the Hypersurfaces in a Euclidean Space
Let $M$ be an orientable hypersurface in the Euclidean space $R^{2n}$ with induced metric $g$ and $TM$ be its tangent bundle. It is known that the tangent bundle $TM$ has induced metric $overline{g}$ as submanifold of the Euclidean space $R^{4n}$ which is not a natural metric in the sense that the submersion $pi :(TM,overline{g})rightarrow (M,g)$ is not the Riemannian submersion. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics & Astronomy International Journal
سال: 2018
ISSN: 2576-4543
DOI: 10.15406/paij.2018.02.00092